Making New Things is Hard

Paul Breed has a post that resonates with me over at his blog Unreasonable Rocket:

“Making a new thing is hard. You will fail, over and over again, you will fail.
Edison tried thousands of light bulb filaments before he found one that worked.”

-Paul Breed

Paul knows this much better than I do. He’s had rockets blow up on the launch pad that he spent several months and several thousand dollars making.

I’m a tightwad, and I’m also not a risk taker. The combination of those two traits has led to some frustration lately as I try to find a way to fabricate the robot lawn mower.

The tightwad in me says find the cheapest way to do it, even if the trade off is more of my time and frustration. I don’t need a drill press. I’ve got a perfectly good cordless drill! That’s the mentality, anyway.

Because I’m not a risk taker, I spend a lot of time planning in my CAD software. You can prevent a lot of issues by planning well. To see the flip side of this coin, search the internet for “DIY robot lawn mower”. Most of the results you get are… janky, to say the least.

Because of these two traits, my initial plan was to have someone else make the robot lawn mower for me. I’m an engineer, not a machinist or welder. I was willing to spend about $2,000 dollars to have someone make my weldments complete. I can do the final assembly work myself; I have hex keys and wrenches at home.

Unfortunately, very few weld shops are willing to do anything but weld for me. They want you to bring them parts, and they’ll weld them up. The ones that are full up fab shops aren’t too interested in my work right now. A few of them have talked to me, but their quotes were several thousand dollars for just the mower deck. I’d hate to see their quotes for the chassis weldment.

For the cost these folks quoted me, I can go get my own band saw, drill press, slip roll machine, and various other tools to make my parts, and come out way ahead. There are lots of guys that can weld aluminum out there. They just don’t want to go buy material, cut it, make it per your print, etc. They’re welders, not prototype makers.

So based on the astronomical quotes I’ve received I’m going to go purchase my own tools, and start fabricating the parts I need for the robot lawn mower. I’ve done a good job making sure I can actually make each part I’ve designed. Now I just need to shell out some money for some good tools, and make it happen.

On my shortlist of items to buy:

tooling
The tools I’ll need to make all the parts for the prototype robot lawn mower.

Having my own tools will be nice. I’ll finally be able to control my own destiny, and make exactly what I need.

Combined Battery Bays

version 5 and 6 compare
Version 5 compared to version 6 of the robot lawn mower.

I started drawing up what the robot lawn mower would look like if we didn’t care about separating the compass from the electric motors. Removing this constraint allows several design efficiencies, some of which I was not expecting.

I decided to use two battery bays on version 5 because I had to mount a mast smack dab in the middle of the chassis. I didn’t want to mount it on a removable lid because it would be cumbersome to remove to get access to the batteries. Instead, I put hinged doors on both bays.

It looks neat in the picture above, but what you don’t see is all the wires running through my chassis tubes between bays to connect the batteries and all the signal wires run through the mast weldment up to the control enclosure. It started getting ridiculous drawing all of that up.

A separate design constraint I’ve been trying to achieve is to keep the wheel base of the robot to a minimum for handling reasons. Unfortunately, the mower deck design I settled on has a motor in the middle of the deck that is a pain to locate such that it doesn’t interfere with the battery bays.

Because I was splitting the battery bays anyway, I positioned the mower deck the way you see in the version 5 picture above. One downside to doing this is that the mower deck is pointing backward from what you see on virtually every riding mower.

bottom compare
The bottom view of version 5 and version 6.

Combining the battery bays let me rotate the mower deck 180º. In the back of my mind I have been worrying the backward orientation of the mower deck might cause performance issues. Now we won’t have to find out.

Additionally, both power and control enclosures can be mounted directly to the battery bay, which will drastically shorten the wire runs I’ll have to make. I’m actually excited to start drawing wires again. Things aren’t so claustrophobic anymore.

And on top of all the benefits above, the chassis weldment went from having 28 total parts to 15. Not too bad!

Small Design Changes

mower 1-6-19
The robot mower design as of this weekend. Some wiring is completed.

I’ve decided to change a few things on the robot mower design. I have a tendency to get hung up on really small things by spending way too much time thinking about them. The deck height adjustment was turning into one of those things.

I’ve changed the design to include four simple clevis pins. They’re $0.50 a piece. You don’t need to adjust the deck height that often, and spending $100 on parts to do that in a fancy way is a waste of effort and money.

I modeled up a discharge chute because I think the mower will need one to look professional. I intended to 3D print it, but it turns out the dimensions are big enough that most hobby websites won’t take it. I know of a place nearby that does industrial 3D printing and they quoted me $290 for the part out of ABS. Yikes. Maybe I’ll try to adapt an off the shelf chute instead. That’ll be more reverse engineering but it will probably work better. And cost a few hundred less.

xt60
Some simple XT60 connectors for the motors. They’re rated for 60A and should be appropriate for this application.

I’ve started modeling up some wires and coming up with a way to neatly connect the motors was more challenging than I thought it would be. I found some “wall mount” XT60 connectors that will hopefully will work well. I’ll have some mounting plates NC machined and then attach the XT60 wall mounts to the plate.

Progress

combine
The robot lawn mower design.

I’ve started doing some wiring diagrams for the robot lawn mower, as the mechanical portion is fairly well defined. However, there are a few things I’m still not sure about:

  1. Will four 12V 35Ah SLA batteries will provide the energy needed to run the mower?
  2. Should the battery bays be replaced with some off the shelf enclosures?
  3. Is there a better way to do the deck height adjustment mechanism?
  4. Are the motors sized appropriately, both for speed and torque?
  5. Is a pulley quick disconnect bushing really the best way to attach the cutting blade to the motor shaft?
  6. The sheet metal used on the weldments is 0.1875in thick aluminum. That is expensive and probably too stout. It should be changed to 0.125in thick.

I’m chasing my tail with these questions above, so I will take some time off from modeling the mechanical side of the mower and work on wiring for a while. Hopefully things will be more clear when I revisit these issues later.

Concept #5

prlm-a50001-e1541049758636.png
A design concept I’ve been working on lately.

The nice thing about CAD software is you can see how different ideas play out before you spend a fortune to discover they don’t work. The past month or so I’ve been drawing up robot mower designs with little luck. The model above is the only one I feel even moderately good about.

Most of the concepts I’ve put together so far feature a sheet metal chassis shaped around my batteries and motors. The upside with these previous designs is that it allows for the smallest vehicle footprint. The downside is that they involve a lot of welding and waterjet parts, and it’s difficult to come up with a simple mechanism to adjust the deck height because the motors mount directly to the chassis.

This new concept has the mower deck hanging beneath the robot frame. Separating the deck from the robot frame allows both to be simplified greatly. To adjust the deck height I plan on putting a few turnbuckles between the robot frame and the mower deck. An added bonus is that I can disassemble it and throw the robot in the trunk of my small Hyundai sedan for field testing.

One potential downside I anticipate with the design above is that it will be top heavy. The four batteries have to sit on top of the robot frame. We can box them in and secure the to the frame, but I’m not sure what the vehicle center of gravity will look. Guess we’ll have to do some more modeling to find out.

The Emergency Stop Switch

This weekend I had some time to install my emergency stop switch. At first I thought I would keep things simple and just mount the emergency stop switch on top of the control enclosure and route one of the battery wires straight through the safety switch. Sounds simple, right? This method, however, presents two big issues:

  1. Hitting the emergency stop switch shuts power off to the entire rover.
  2. A high current carrying wire has to run through the control enclosure.

The first item above is an issue because we want to be able to communicate an emergency shut down state to the ground control laptop. If all the power is shut off to the rover, a power failure and an emergency shut down will appear identical from the ground control’s perspective.

The second item is an issue because it defeats the purpose of separating the power and control electronics. The constraint here is that the emergency stop switch has to be mounted on top of the control enclosure so it is visible, accessible, and in a safe location, but we can’t have a high power wire running through it. We want to keep those noisy high current wires away from sensitive electronics.

The solution? A relay! Or more specifically, a set of relays. We’ll have the emergency switch trigger a relay that cuts power to the drive motors only in an emergency state. We’ll also keep all the high current wires contained to the power enclosure.

Safety System
The wiring diagram for the emergency stop system.

The FIT0156 emergency stop switch has two integral switches triggered by the big red button. One is NC and the other is NO. Our system uses the NC switch. When the button is pressed, the switch opens and prevents 5V from flowing to the CH1 and CH2 pins on the relay module. This opens the motor circuit, immobilizing the rover.

The IM120525001 2 channel relay was only $3, but I wasn’t sure if it would be large enough to conduct the current needed by the motors. I decided to take a gamble, and I’m glad I did. The module works very well. The spec sheets say it can conduct up to 30A at 24VDC. The only drawback is that the screw terminals on the module aren’t big enough for 14 gage wire. I had to use 16 gage wire instead.

I measured current flow between the 5V output on the Mauch BEC and VCC on the IM120525001 module and my ammeter said it consumes 170mA, a little bit high for my liking, but manageable. The Mauch BEC is rated for 3A, so it shouldn’t be a big issue.

I oversized both enclosures knowing there would be additional things I add later, and I am glad that I did. The emergency stop switch and relay module both fit nicely in my enclosures.

Relay
The power enclosure with the relay module mounted nicely in the lower right. Both of the motors have one wire routed through the relay module before connecting to the Sabertooth motor controller.

I used one of my remaining 8 pins on the DB15 breakout board to route the emergency stop switch down to the power box. This wire goes to both the CH1 and Ch2 pins on the relay module. When you hit the button both motor circuits are opened.

IMG_3956
The big red button installed on the rover. Be sure to include large, clear signage stating that this is how you shut it off!

So the total cost of our emergency system:

  1. Emergency stop switch, $6
  2. Relay module, $3
  3. Emergency stop sticker, $2
  4. Miscellaneous wire, $1

Tack on a few dollars for shipping and sales tax for those items and you’re still easily under $20. Not too shabby.