A Poor Man’s RTK Base Station

I may not be able to afford a Emlid Reach RS2, but I’ve got a cordless drill and an Amazon Prime account, dang it!

Putting my RTK base station on the mailbox works pretty good, but it takes a while to set it up and it’s not very robust. Using it in this manner results in a few problems:

  1. The cell phone battery pack that I use to power to the receiver turns off after a while. I’m not sure if this is because the receiver only draws ~120mA of current and it doesn’t detect the receiver, or if it just times out. Either way, it’s quite annoying to discover the reason I can’t get an RTK fix or float is because the base station isn’t even on.
  2. The neighbors getting their mail usually block enough satellite signals to cause the receiver to lose an RTK fix. Cars driving down the street will often affect the quality of reception, too. Unfortunately, I can’t pick up the mailbox and move it to a more favorable location.
  3. The receiver and antenna are exposed to the elements. While I usually use them in good weather, I would like to be able to use them without having to worry about risking damage to the units from rain, wind, and the Kansas critters.
  4. When I’m out testing in the parking lot there’s not an equivalent of my mailbox out there for me to set the receiver on. The roof of my car doesn’t count because it’s not geostationary. I’d like to have a way to repeatably locate the receiver when I’m testing in the parking lot.
  5. Maybe I’m paranoid, but I’m always worried about some punk kid walking off with the base station module when it’s not within my line of sight. The punk kid I used to be in my teenage years would have done something malicious like that. It’d be great if I could make it a little bit more difficult to steal.

With these goals in mind, I decided it was time to build a real base station. One like the Emlid Reach RS2, but doesn’t cost me $1,899.

A Glorified Enclosure

The Emlid guys are geniuses. They basically took an RTK GNSS chip they can buy in bulk for $150 a piece, slapped it in a super nice thermoplastic case, developed an app that is more or less equivalent to U-Blox’s U-Center, and then stuck a price tag of $1,899 on it. I’m embarrassed I didn’t think of doing it myself.

They do offer some nice benefits with that $1,899 price tag, such as integral Wi-Fi and data logging capability, but in my humble opinion, those features aren’t worth what they’re charging. Realistically, I need a tripod, a mostly waterproof enclosure, a lead acid battery with a charger, and a cover for my GNSS antenna. Something like this:

RSTP-A10001 (06-21-19)
My version of the Emlid Reach RS2.

I have a 12V lead acid battery and charger I stole from an old weed eater that I intend to use for this enclosure. The battery is rated for 3.6Ah, and according to the Ardusimple website, the board consumes 600mW at 5V, so 120mA of current. That would mean you could keep the Ardusimple board on for 30 hours. Not too shabby! I don’t know if they’re including the radio current consumption in those numbers, but even if it’s twice the 600mW they listed, we should be in good shape.

I’m still learning how to use these GPS modules, so I want to have access to the micro USB port that lets me communicate with them via U-Center. I found one of these cables for that purpose. I want to be able to interface with the board without opening the enclosure.

The guys that designed the Ardusimple boards were very forward thinking, and they made them such that you can power the board from any port or all the ports. The board has two micro USB ports, one for GPS data and the other for debugging the XBee radios. I don’t anticipate needing to use the XBee port often, so I am going to power the board with it instead.

To step down the 12V to 5V the board needs, I am going to use one of these DC to DC buck converters. Instead of two wire leads for the 5V output, it has a micro USB connector. Very handy. This converter should plug and play right into the XBee micro USB port.

One concern I have with it is RF interference. I’ve read some comments saying these converters don’t play well with FM radios. The way my enclosure is designed, I’ve got it sitting right below the Ardusimple board. GPS signals are in the 1.5GHz range if I remember right, so maybe we’ll be okay.

I’d like to use a tripod that’s stouter than your consumer grade camera tripod. Ideally it would have a hook under the center that I can hang a plumb bob from to make sure I’m setting the tripod up in the same location every time. I found a tripod that appears to fit the bill on Amazon.

tripod stud
A survey grade tripod that looks promising. The 5/8-11 UNC stud is stout, but a little inconvenient.

Most survey grade tripods appear to have a 5/8-11 UNC threaded stud, so I’ve used a low profile cap screw with a coupling hex nut to mount the enclosure on the tripod.

The tripod mount method
The coupling nut used to interface the enclosure with the tripod.

Last but not least, I need a way to protect the antenna as it sits on top of the enclosure. I opted for the OEM antennas that Ardusimple sells for the simple reason that all the other antennas they offered came with no less than 5m of extra cable. Yikes. Where would you put all of that cable? The OEM antenna cable was 30cm long.

The downside to the OEM antenna is that it doesn’t have any protective case. I could have 3D printed something, but I like to keep things simple. I really just need a dome looking thingy to cover it.

It’s kind of amazing what Google can find if you type “plastic dome” into the search field. At least for me, it turned up this on the first page of results. Pretty much exactly what I’m looking for. I intend to use a modified pipe gasket and some rubber washers for an approximately water tight seal.

The dome is about an eighth of an inch thick, so to make sure it doesn’t attenuate the GPS signals too much, I did a little test where I put a similar plastic bowl over the receiver. It affects the signal strength only marginally.

Last but not least, every GPS antenna needs a good ground plane. Sparkfun sells a 4in diameter ground plane for $5. It’s 0.125in thick steel which is a bummer for drilling holes through, but it beats routing the circular profile out of a piece of bar stock.

Bill of material for the poor man’s RTK GPS base station. The items I have on hand have a zero quantity.

Total cost? Should be under $200, depending on shipping for all these items. You too can have a Emlid Reach RS2 for the low, low price of $200.

2 thoughts on “A Poor Man’s RTK Base Station

  1. The parts list above, has an incorrect part number. The 6.3 inch polycase enclosure is a WP-39, not WP-36. Unfortunately, I’ve already received the WP-36’s, and knew something was wrong when the dome was too large for the enclosure…


    1. Hi John,

      You are correct about the enclosure part number. I experimented with several different enclosures and downloaded a few different CAD files to find the right one. I got the part numbers switched when making the Bill of Material. I keep a URL to the part number and it was correct, but the description was wrong. Sorry about that! The WP-39 enclosure is the correct one.

      If you’re interested, I can send you my CAD file for the whole thing, or an excel spreadsheet BOM with links to the various places I intended to purchase parts from.

      You are already way ahead of me, I haven’t even ordered my parts yet!


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s